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I ABSTRACT 

I 
I An algori thm is described f o r  minimizing an a rb i t r a ry  scalar cost  

function c(x) with respect  t o  an n-vector x. At each stage of the minimiza- 

tion, the cost  function is approximated by a quadratic f o r m  in the region 

I about the cur ren t  lowest-cost point. The next t r i a l  point is taken as the 

minimum of this quadratic f o r m  within a hypercube in n-space centered 

at the cu r ren t  lowest-cost  point. 

The procedure has quadratic convergence, but differs  f r o m  other 

quadratically convergent minimization algorithms in that ( 1) minimiza- 

tion is over  a sequence of n-dimensional regions ra ther  than over a 

sequence of one-dimensional s t ra ight  lines ( 2 )  the local approximation to  

the cos t  su r f ace  need not be positive definite ( 3 )  each approximation depends 

only on t r u e  cost  values and is independent of pr ior  approximations 

(4) after each  evaluation of cost  a t  a t r ia l  point, the t r i a l  point is added, and 

a point dis tant  f r o m  the cur ren t  lowest-cost point is  deleted, f r o m  the 

set of points to  which the next quadratic f o r m  will interpolate. The  a l -  

gor i thm takes  relatively la rge  s teps ,  and is forced by (4) to  l ea rn  f r o m  

its fai lures .  

T e s t  r e su l t s  a r e  presented for  n 2 using Rosenbrock 's  parabolic 

valley as the cost  function. 



Introduction 

Recent surveys of function minimization algorithms [ 13, [2], show 

the superior i ty  of algorithms having the property of quadratic convergence, 

i. e , ,  the property that i f  the cost  function is exactly a quadratic form,  

the computation terminates  at the exact min imum in a finite number of s teps ,  

These algorithms involve a sequence of one-dimensional searches  along a 

4; 

sequence of s t ra ight  lines. In the las t  cycle of one-dimensional s ea rch ,  

the directions of s ea rch  a r e  mutually conjugate. This l a s t  cycle of s e a r c h  

along conjugate directions yields quadratic convergence [3]. 

In any s e a r c h  procedure,  values of cost  and possibly gradients of cost  

a r e  computed a t  a sequence of points. Each datum consisting of a value of 

cost  and associated x, or  a component of the gradient and associated x, 

furnishes  information that could be used a s  an equation of condition for  

the coefficients of a local quadratic model in n-space. A s  soon as the 

number of data gathered on the cost  function equals the number of coeffi- 

cients required in the local quadratic model, it is usually possible to  

compute these coefficients and to find the minimum of the quadratic model 

within some region in which the model is assumed t o  be valid. 

If the cos t  function is a positive definite quadratic fo rm,  it will  be 

modeled exactly. 

of the cos t  function. 

The minimum of the quadratic model will be the minimum 

Thus any algorithm which direct ly  computes and 

minimizes  a local quadratic model has quadratic convergence. 

The number of data required to  define the local quadratic f o r m  is 

the min imum number of data required to  give an algori thm the property of 

* 
See  Reference  [5], pp. 72-73 for  the distinction between quadratic con- 
vergence  in this sense ,  and the asymptotic quadratic behavior of an  i t e r a -  
tion such as Newton's method for  finding the root of an equation. 
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quadratic convergence. 

dimensional s ea rches  use m o r e  than this minimum number of da ta . .  This  

A l l  the algorithms based on a sequence of one- 

suggests the possibility that  in  minimizing a general  (i. e. , non-quadratic) 

cos t  function, a n  algorithm based on local quadratic models may requi re  

less data on the cos t  function than algorithms based on one-dimensional 

s e a r c  hes . 
A s  a test of this conjecture,  local quadratic models are ueed in the 

problem of function minimization without der ivat ives ,  using Rosenbrock’r 

valley 141 as the cos t  function. 

minimized over a square  constraint  region, giving rise to  a Sequence of 

Quadratic Programming problems. (Hence the name of the algomithm to  

be described is SQP. ) 

A t  each s tage,  a local quadratic model ir 

Description of the SQP Algorithm for  n = 2 

In the local quadratic model 

“ 1  T T q(x) = * x  A x  t b x t d 

there  a r e  4 n(n t 1) distinct elements in the symmetr ic  matrix A ,  n e lements  

in the vector b,  and one element in the s c a l a r  d ,  o r  a total  of 

N = & n  t l ) (n  t 2) (2) 

unknown coefficients to be determined by fi t t ing q(x) t o  c(x)  at a set of 

i pointe x , i = 1 , .  , . , N .  In a plane, n = 2 and N = 6. 

The algorithm proceeds as follows: 

1. Initialize the s e a r c h  by evaluating cos t  at the s ta r t ing  point x and 

a t  five additional points obtained by increment-ing the s ta r t ing  point by 

vectors  ( - a ,  01, ( a ,  O), (0, -a ) ,  (0, a )  and ( a ,  a). 

2. Define the basepoint as the lowest-cost  point of these  eix points. 

S tore  the coordinates of the basepoint and cos t  at the basepoint into the 

first row of a table of points and cos ts ,  In the  second row, store the point 
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nea res t  the basepoint and cos t  a t  that point. Continue s tor ing points and 

costs  ordered  on distance f r o m  the basepoint in successive lower rows. 

After a t ranslat ion of coordinates which places the origin a t  the basepoint, 

the table has the f o r m  

2 
1 X 

3 
1 X 

6 
x1 

10 
x1 

2 
x, 

L 

3 
x2 

6 
x2 

10 
x1 

Figure  1. Table  of Points and Costs  

The en t r i e s  sat isfy 

i = 2 , .  . . , 10 i c(0) c (x  ) 

[ x i ~ T  xi [ x j ~ T  ,j 1 S i <  j s  10 
( 3 )  

This  table  is a rb i t r a r i l y  l imited to  ten rows,  and is reordered  to  sat isfy 

the above relations whenever a new basepoint is chosen. 

init ialized with en t r ies  in the f i r s t  s ix  rows,  and acquires  en t r ies  in the 

lower rows a s  t h e  s e a r c h  progresses .  

The table is 

Only the first six rows participate in forming the local quadrat ic  model, 

The  remaining four  rows constitute a res idua l  memory  which may be called 

upon in the event that  a basepoint is found nea r  one of these four points. 
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It will  be shown that  each new point first appears  in one of the six top rows ,  

gradually goes lower in the table as the basepoint moves away f r o m  i t ,  

and is finally discarded. 

3. With the origin at the basepoint, d in equation (1)  is s imply c(0).  

T o  find a l l ,  a12, aZ2,  b l ,  b2,  f o r  the quadrat ic  model,  solve the five 

equations of condition 

i)[xiIT Axi t bT xi = c(xi) - d i = 2 , 3 ,  . . . ,  6 (4) 

i where  x and c(xi) a r e  the points and cos ts  in the second through s ixth rows 

of the table of points and costs .  

init ial  points specified in s t e p  (1. ) due to  the pat tern of these  points. 

the s y s t e m  (4) was solved with other  s e t s  of five points generated in the 

course  of the Rosenbrock problem, no s ingular i ty  was e v e r  encountered. 

4. A s  a check on the A ,  b y  d jus t  computed, evaluate the quadrat ic  

In  

The s y s t e m  (4) is non-singular for  the 

When 

model q(x)  to verify that i t  equals c(x) a t  the points of interpolation. 

the Rosenbrock problem, this condition was always sat isf ied t o  six digits. 

In  the following computations,  the region of validity of the quadrat ic  

model wil l  be defined as a cer ta in  square  centered  at the c u r r e n t  basepoint. 

The minimum of the quadrat ic  f o r m  over this squa re  cons t ra in t  region wil l  

be found by solving a quadrat ic  programming problem. 

L e t  x be the solution of the quadra t ic  programming problem. If m i n  

the t r u e  cost  c (x  

x 

points and costs .  If c(x ) is not l e s s  than cos t  at the c u r r e n t  basepoint,  

then ( a s  wil l  be shown) the order ing  of points by d is tance  f r o m  the c u r r e n t  

basepoint causes  x 

rows 2,  3 , 4 ,  5, o r  6. 

model ,  the recent  t r i a l  x always influences the next model. 

) is l e s s  at x min  min  than at any previous trial point, then 

becomes the new basepoint and is placed in the first row of the table  of min  

min 

and c(x  min min  ) t o  be en te red  in the tab le  in  one of the 

Since the f i r s t  s i x  rows  de te rmine  the next quadra t ic  

min  
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Regard less  of whether o r  not c (x  ) represents  a reduction of cost ,  min 

a new quadrat ic  model, a new constraint  region, and hence a new quadrat ic  

programming problem, a r e  defined. 

(a f te r  the initial six) is obtained by solving a quadratic programming problem. 

Thus each successive trial point 

The algori thm a s  a whole is a sequence of quadratic programming problems. 
9; 

5. Let  r be the distance f r o m  the basepoint t o  the fa r thes t  of the 

five points neares t  the basepoint, i. e . ,  

6 T  6 r = [ x ]  x 

Let  a be a constraint  region reduction factor.  Set a = 1 for  the first quadra-  

t i c  programming problem. Within the sequence of quadrat ic  programming 

problems,  s e t  a = 1 i f  the previous quadratic programming problem has  

located a new lowest-cost  point. If the previous quadrat ic  programming 

problem failed to  locate a new lowest-cost  point, set 

6 .  Define a square  constraint  region centered a t  the basepoint, with 

c o r n e r s  a t  ( + G ,  kG) re lat ive to  the basepoint (0 ,  0 ) ,  where the semi-s ide  

G is computed a s  

, 9 9 9  ra G =  
F 

(7) 

where G Then limit G by G Z Gmax, 

pa r t i cu la r  problem. 

is an appropriate  bound for  a max 

7. Minimize the local quadratic model over the square  constraint  

region. This  is a well-posed quadratic programming problem rega rd le s s  

of whether  o r  not the quadrat ic  fo rm is positive definite. The minimum 

* 
Distance may be measured  relative to  an a r b i t r a r y  me t r i c ,  h e r e  taken 
as the  identity matrix. 
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x 

gence is approached, the minimum will occur in the in te r ior  of the square .  

may lie on a boundary o r  in the inter ior  of the square.  A s  conver-  
min  

8. Evaluate c (x  ). If this is l e s s  than cost  at the cu r ren t  basepoint,  min  

then x becomes the new basepoint. In  the table of points and cos t s ,  x 

and c(x  

according to the i r  dis tances  f r o m  the new basepoint. 

min min  

) a r e  placed in the first row, and other points are r eo rde red  m i n  

F igure  2 i l lus t ra tes  the events corresponding t o  a reduction of cost .  
- * 

F i r s t  the basepoint x = 0 and adjacent points %, x c 9  Xd, Xf, and the i r  
a 

associated cost  values par t ic ipate  in forming a local quadrat ic  model. 

Suppose a = 1 a t  this k-th stage. 

k r . 
axes ,  inscribed in a c i r c l e  of radius  . 999r  centered at the basepoint. The  

minimum of the quadrat ic  f o r m  over the constraint  region is found at x min’ 

and c ( x  

points a r e  reordered  by dis tance relat ive to  the new basepoint x 

Points x 

. Since the previous model. 

quadrat ic  programming problem reduced cos t ,  a = 1, and the new con- 

s t r a in t  region i s  the squa re  inscr ibed in  the c i r c l e  of rad ius  . 999r  

centered a t  x 

The dis tance f r o m  the basepoint to  xf is 

The constraint  region is a square  with s ides  para l le l  t o  the coordinate 

k 

) proves to  be l e s s  than cost  a t  all previous t r i a l  points, Now m i n  

min’ 

x x x part ic ipate  in forming a new quadrat ic  m i n ’  Xd’ xaJ c’ i ’  b’ 

The new rktl is the dis tance f r o m  x min  to ”b 

k t l  

min’ 

9. Suppose that x the minimum of the quadra t ic  model  q (x ) ,  min’ 

I 
proved not to be a minimum of the t rue  cos t  function, c(x) .  Then x is 

retained a s  basepoint, as shown in F igu re  3. 

based on x 

to  x 

a 

A new loca l  quadrat ic  model  is 

a XbS x c S  Xd, Xmin# x e . The new rk+’ is the dis tance f r o m  x 

The new Because the previous trial did not reduce  cos t ,  a = . 9 5 .  e‘ 

hk 
The le t te r  subscr ip ts  denote fixed points r e g a r d l e s s  of dis tance f r o m  the 
basepoint,  in cont ras t  t o  the numer ica l  s u p e r s c r i p t s  of F i g u r e  1 ,  which 
denote ordering by dis tance f r o m  the c u r r e n t  basepoint.  

I 



Xh 

K- t h  Table of Points and Costs k t 4  s t  Table of Points and Costs 

Influence 
local quadratic 
mode I 

FIG. 2 THE NEW TRIAL POINT Xmin REDUCES COST 



K- t h  Table of Points and Costs k t i  st Table of Points and Costs 

FIG. 3 THE NEW TRIAL POINT Xmin FAILS TO REDUCE COST 
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constraint  region is the square  inscribed in the circle of radius 

(.  999)( .  95)rkt1 centered a t  xa. 

I 

10. The shape of the constraint  region was chosen to be a square  because 

I this simplifies the quadratic programming problem. 

(7)  for  the s ize  of the square was chosen to force  the algorithm to "learn" 

quickly f r o m  failures.  

The par t icular  formula 

Suppose the constraint  region had been permitted to  be s o  la rge  that 

its co rne r  was fa r ther  f r o m  the basepoint than the fa r thes t  of the five closest  

points used to  form the interpolating quadratic form. Suppose the minimum 

I of the quadratic f o r m  occurred at a corner ,  and that this  point failed to  

reduce cost ,  

the s a m e  five points c losest  t o  the basepoint, and hence with the s a m e  quadra- 

t ic  form.  

Then the next cycle would begin with the same basepoint, with 
I 

The constraint  region would have contracted,  but the quadratic 

f o r m  would be unchanged. 

region would have shrunk sufficiently to fo rce  inclusion of a new point as one 

of the c loses t  five. 

the fa i lure  point in determining the next quadratic form.  

ensu res  that every  point in the constraint  region, and hence x 

t o  the basepoint than the far thest  of the five points used in defining the 

quadrat ic  form. Thus i f  the new trial point fa i ls  t o  reduce cos t ,  and the 

or iginal  basepoint is retained, the new trial point is added, and the most  d i s -  

tant  of the original five points is deleted, f r o m  the s e t  of points used to  f o r m  

the next quadratic model. 

After several  (wasted) cycles the constraint  

In contrast ,  formula (7)  forces  immediate inclusion of 

Formula  ( 7 )  

min'  is c lose r  



-10- 

Numer ica l  Comparison of SQP with Other Function Minimization Methods 

Which Do Not Require  Derivatives 

A frequently used cost  function for  tes t ing minimization algori thms is 

the parabolic valley of Rosenbrock [4]. 

( 8 )  
2 c(x) = 1OO(x 1 - x y  t ( 1  - x l )  

F o r  this cost  function, Powell  [3]  and Stewart  [5] r epor t  data  which are  

reproduced in Tables  1 and 2. 

obtained using SQP. 

to  reach  the minimum is abou t .  38 t imes  the number requi red  by S tewar t ' s  

method. 

solving the 62 quadrat ic  programming problems was about . 8 ? . 1 minute. 

Table  3 is a computer printout of data  

The number of function evaluations requi red  by SQP 

The computer t ime requi red  on the IBM 7094 for  sett ing up and 

Application i n  Higher -Dimensional Minimization P r o b l e m s  

A virtue of SQP i s  its efficient use of each  da tum of information con- 

cerning the cost  function, s o  that  the overa l l  minimization may be  completed 

with relatively few data. 

f i t  the quadrat ic  model. 

A defect is the computational effort  requi red  t o  

In n-space,  the number of data in addition to  cos t  at the basepoint 

required to  f i t  a local  quadrat ic  model a r e  

N - 1 = Q(n t l ) ( n  t 2) - 1 = +n(n t 3) 

The Qn(n t 3) coefficients of the quadrat ic  model  a r e  obtained by solving 

+ n ( n  t 3)  l inear  equations. 

va r i e s  as the cube of the dimension [6]. 

quadratically convergent cycle va r i e s  as the s ix th  power of n. 

The computational work  in solving a l inear  s y s t e m  

Hence the computational work p e r  

The dollar cost  of function minimization by SQP is approximately 

3 3 
D = Nq[$(n t l ) ( n  -t 2 ) k l  t [* n(n t 3 ) ]  k 2  + (n  - 1) k33 
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Iteration 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Function 
Values 

1 
14 
25 
35 
46 
57 
71 
84 
97 

109 
122 
131 
142 
151 

x1 

-1.2000 
-0 .  9912 
-0 .  7674 
- 0 -  5017 
-0 .  2840 
-0 .  0123 

0. 2568 
0.4379 
0 .  6810 
0. 8341 
0 .  8894 
1. 0014 
0. 9926 
1 ~ 0 0 0 0  

2 X 

1 ~ 0 0 0 0  
0.9927 
0-  5485 
0. 2064 
0-  0307 

- 0 .  0408 
0 -  0369 
0.1624 
0.4478 
0 -  6818 
0. 7948 
0 -  9997 
0.9850 
1 ~ 0 0 0 0  

24- 2000 
3.9753 
3. 2863 
2. 4608 
1. 8978 
1. 1927 
0. 6366 
0-  4026 
0. 1274 
0. 0469 
0. 0137 
0 ~ 0 0 1 0  
6 X  
7 x 10-10 

Table  1. PQwell 's  Descent of the Rosenbrock Valley [3] 

Iteration 
No. 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
23 
24 
25 
26 

Table  2. Stewart ' s  

Number of 
function 

evaluations 

1 
13 
26 
39 
56 
70 
8 3  
97 

111 
124 
132 
145 
152 
163 
169 
174 

2 .4  101 
3.8 10' 

1 . 9  10 
7 .1  10- 
2 . 9  10-1 
1 . 4  10-1 

1 .8  

2.9 10; 

5 .4  10-2 

1 . 3  l o - ?  
1 .7  10-6 

1 .0  10-11 

3 . 3  10-12 
3 .3  10-12 

2.8 

9.0 

Iescent  of the Rosenbrock Valley [5] 
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R u n  S u m m a r y  T a b l e  

Evalua t ion  
N u m b e r  X Y c o s t  

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
12  
13 
14 
1 5  
16 
17  
18 
19 
20 
21 
22 
2 3  
2 4  
25  
26  
27 
28  
29 
30 
31  
32 
33 
34  
3 5  
36 
37 
38 
39 
40 
41 

-0. 17000003  01  
-0. 12000003  01 
-0. 70000003  00 
-0. 12000003  01 
-0. 12000003  01  
-0. 12000003  01 
-0. 95681163  00 
-0. 74865193  00 

-0 .67199823  00 
-0. 67199823  00 

- 0 . 6 3 8 2 6 7 5 3  00 
-0 .63826753  00 
-0. 63826753  00 
-0 .43093513  00  
-0 .43093513  00 
-0. 43093513  00 
-0. 34452033  00 
-0. 34452033  00 
-0. 12357843  00 
-0. 12357843  00 
-0. 1 2 3 5 7 8 4 3  00 
-0. 1 2 3 5 7 8 4 3  00  

- 0 . 7 4 8 6 5 1 9 3  00 

-0. 67199823  00 

0. 50122903-01  
0. 50122903-01  
0. 22739673  00 
0. 2273967E 00 
0. 22739673  00 
0. 22739673  00 
0 .22739673  00 
0. 39313693  00 
0. 56999513  00 
0. 56999513  00  
0 .46814243  00  
0 .48553943  00 
0. 60006403  00 
0. 60006403  00  
0 .60006403  00 
0. 66975773  00 
0 .63970443  00  

0. l O O O O O O E  01 
0. 1 O O O O O O E  01  
0. 1 O O O O O O E  01  
0. 1 5 0 0 0 0 0 3  01  
0. 50000003  00 
0. 1 5 0 0 0 0 0 3  01  
0. 1 O O O O O O E  01  
0. 6 0 2 9 3 5 4 3  00 
0. 60293543  00 
0 . 4 5 9 7 0 0 0 3  00 
0 . 4 5 9 7 0 0 0 3  00 
0 . 4 5 9 7 0 0 0 3  00 
0. 4055506E 00 
0 . 4 0 5 5 5 0 6 3  00 
0 . 4 0 5 5 5 0 6 3  00 
0. 1 9 8 2 1 8 1 3  00 
0. 1 9 8 2 1 8 1 3  00 
0. 1 9 8 2 1 8 1 3  00 
0. 1 6 5 2 7 2 1 3  00 
0. 1 6 5 2 7 2 1 3  00 

-0. 17593783-01  
-0. 17593783-01  

-0. 17593783-01  
-0. 17593783-01  

0. 1 3 1 1 6 0 5 3 - 0 1  
0. 1 3 1 1 6 0 5 3 - 0 1  
0. 90372453-01  

0 . 9 0 3 7 2 4 5 3 - 0 1  
0 . 9 0 3 7 2 4 5 3 - 0 1  
0 . 9 0 3 7 2 4 5 3 - 0 1  
0. 14881313 00 
0 . 2 8 5 4 6 0 9 3  00 
0. 2 8 5 4 6 0 9 3  00 
0 . 2 2 3 0 9 3 1 3  00 
0 . 2 3 6 3 1 7 6 3  00 
0. 3 5 2 3 3 5 3 3  00  
0. 3 5 2 3 3 5 3 3  0 0  
0. 3 5 2 3 3 5 3 3  00 
0 .4700739E 00 
0 . 4 1 7 2 3 6 0 3  00 

0. 9 0 3 7 2 4 5 3 - 0 1  

T a b l e  3. SQP D e s c e n t  of t h e  R o s e n b r o c k  Va l l ey  

0. 36450003  0 3  
0 . 2 4 2 0 0 0 0 3  02 
0. 2890000E 02 
0. 52000003  01  
0. 93200003  02 
0. 5 2 0 0 0 0 0 3  01  
0 . 4 5 4 3 3 3 2 3  0 1  
0 . 3 2 3 8 0 3 3 3  01 
0. 32380333  01  
0. 28021693  0 1  
0 . 2 8 0 2 1 6 9 3  01  
0 . 2 8 0 2 1 6 9 3  01  
0 . 2 6 8 4 2 5 7 3  01  
0 . 2 6 8 4 2 5 7 3  01  
0 .2684257E 01  
0 . 2 0 6 3 2 3 3 3  01  
0 . 2 0 6 3 2 3 3 3  01  
0 . 2 0 6 3 2 3 3 3  0 1  
0. 2024684E 0 1  
0 . 2 0 2 4 6 8 4 3  01  
0. 1 3 7 0 4 4 2 3  01 
0. 1 3 7 0 4 4 2 3  01  
0. 1 3 7 0 4 4 2 3  01  
0. 1 3 7 0 4 4 2 3  01  
0 . 9 1 3 5 1 0 4 3  00 
0. 9 1 3 5 1 0 4 3  00 
0 . 7 4 6 3 9 9 8 3  00 
0 , 7 4 6 3 9 9 8 3  00 
0 . 7 4 6 3 9 9 8 3  00 
0 . 7 4 6 3 9 9 8 3  00 
0 . 7 4 6 3 9 9 8 3  00 
0. 3 7 1 5 8 1 6 3  00  
0. 3 4 0 4 0 5 0 3  00 
0. 3404050E 00 
0 . 2 8 4 4 2 1 5 3  00 
0 . 2 6 4 7 0 2 1 3  00 
0. 1 6 5 9 4 1 8 3  00 
0. 1 6 5 9 4 1 8 3  00 
0. 1 6 5 9 4 1 8 3  00 
0. 1 5 5 2 7 8 7 3  00 
0. 1 3 6 2 3 5 8 3  00 
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Evaluation 
Number 

42 
43  
44 
45  
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63  
64 
65 
66 
67 
68 

X 

0. 63970443 00 
9. 74208113 00 
0.74208113 00 
0, 74208113 00  
0. 77234813 00 
0. 77234813 00 
0.80482543 00 
0.81915853 00 
0.86908453 00 
0.86908453 00 
0.86908453 00  
0. 91838513 00  
0. 96236993 00  
0. 96236993 00  
0. 99646623 00 
0. 99646623 00  
0.99646623 00  
0. 99603813 00 
0. 99603813 00 
0.99841503 00  
0.99915903 00 
0. 10000153 01 
0. 10000153 01 
0. 99999193 00 
0. 99999603 00 
0. l O O O O O l E  01 
0.99999993 00 

Y 

0.41723603 00 
0.54751653 00 
0,54751653 00 
0.54751653 00  
0.58739353 00 
0. 58739353 00 
0.64602563 00 
0.66990463 00 
0.7512339E 00 
0.7512339E 00 
0.75123393 00 
0.83779263 00 
0,92362463 00 
0.92362463 00 
0.99144453 00 
0.99144453 00 
0.99144453 00 
0.99180403 00 
0.99180403 00 
0.99685943 00 
0.99833793 00 
0.1000005E 01 
0.1000005E 01 
0.99998193 00 
0.99999073 00 
0. 10000023 01 
0.99999993 00 

c o s t  

0. 13623583 00 
0.67525693-01 
0.67525693-01 
0.67525693-01 
0.60157583-01 
0.60157583-01 
0. 38388393-01 
0. 32828203-01 

0. 18798593-01 
0. 18798593-01 
0.98402793-02 
0. 20567633-02 
0. 20567633-02 
0.23757623-03 
0.23757623-03 
0.23757623-03 
0. 23987183-04 
0. 23987183-04 
0.25840633-05 
0. 74394773-06 
0. 62744573-07 
0. 62744573-07 
0.41036973-09 
0. 18202803-09 
0. 19826363- 11 
0.44964033-14 

0. 18798593-01 

Table 3. (continued) 
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where  N 

convergence. 

is the number of quadratic programming problems required for  
9 

Within the curly brackets ,  the first t e r m  represents  the cost  of 

obtaining $(n t l ) ( n  t 2)  data on the function. 

the cos t  of fitting the quadratic model. 

of solving the quadratic programming problem. 

The second t e r m  represents  

The third t e r m  represents  the cos t  

F o r  la rge  n, the second 

t e r m  is dominant. 

The SQP technique seems  appropriate for  problems in which the cos t  

of evaluating the function to  be minimized (e. g. by actually car ry ing  out 

some experimental  p rocess)  is la rge  relative to  the cost  of computation to 

locate a new t r i a l  point. 

Conclusion 

The distinguishing features  of the SQP algori thm a r e  

(1)  generation of a table of t rue  cost  values a t  a sequence of points 

( 2 )  generation of an interpolating function which approximates the 
t rue  cost  function within a region (e. g. , a hypercube) centered a t  
the cur ren t  lowest-cost point 

( 3 )  selection of a new t r i a l  point a s  the minimum of the interpolating 
function within the region 

(4) a method of forcing the modification of the interpolating function 
by inclusion of information f r o m  each new t r i a l ,  whether o r  not 
that  t r i a l  reduced cost. 

The algorithm differs f r o m  cur ren t  prac t ice  in the cha rac t e r  of m e m o r y  

and in the method of learning f r o m  failure.  

Memory consis ts  only of the table of points and costs .  At each s tep ,  

past  t r i a l s  influence the location of the nex t  trial only through the par t i -  

cular  b ( n  t l ) ( n  t 2) points and cost  values which de termine  the cu r ren t  

interpolating quadrat ic  form. These points alone de te rmine  the local 
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quadratic model and the region in which it is to  be minimized. Each local 

model is formed a f r e sh ,  based only on "raw data" f r o m  the table of points 

and costs. 

quadratic model to be used in finding a new basepoint. This is in cont ras t  

t o  the method of Davidon [ i ' ] ,  [8] in which the cur ren t  approximation to  the 

ma t r ix  of second par t ia l  derivatives of cost  with respec t  to x ref lects  all 

p r io r  experience,  even obsolete experience a t  an initial point f a r  distant 

f r o m  the cu r ren t  trial. This is a l so  in contrast  to Powell 's  a lgori thm [3], 

in which the cur ren t  s e t  of (approximately) conjugate directions ref lect  a l l  

p r io r  experience in the search.  

Only points close to  the cur ren t  basepoint may determine the 

In the algorithms of Davidon and Powell, cost  values a r e  not retained 

af te r  the i r  immediate use in one-dimensional minimization. 

used to  guide the location of future t r ia ls .  In  contrast ,  in SQP, the s i ze  

of the constraint  hypercube forces  the new t r i a l  point to  be sufficiently c lose 

to the basepoint so  that,  even i f  the t r i a l  fails to  reduce cost ,  the new point 

will be included a s  one of the *n(n t 3) points c loses t  to  the basepoint, and 

will  play a role  in determining the next interpolating quadratic form. 

long as the  basepoint remains  sufficiently near  this point, the point continues 

t o  influence the interpolating quadratic form.  

They are not 

.L -I. 

So 

The influence his tory of a given t r i a l  point x and cost  c(x) may  be 

summar ized  as follows: A s  the basepoint moves away f r o m  x ( a s  the 

r e su l t  of successful  trials) o r  m o r e  points are added nea re r  t o  the base-  

point than x (as the r e su l t  of unsuccessful t r i a l s )  the t r i a l  point x is eventually 

excluded f r o m  the s e t  of points determining the cu r ren t  quadratic model. 

The point remains  in r e s e r v e  in the table of points and cos ts ,  ready to  be 

>% 
This  forced revision of the consensus reached by the previous se t  of 
&n -t l ) ( n  t 2) points is an important and possibly novel feature of SQP 
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consulted should a basepoint ever  again come sufficiently close. 

the point drops to some sufficiently low status  in terms of c loseness  to  the 

cu r ren t  basepoint, is it forgotten entirely. 

Only after 
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